

Motivation

• **Goal**: to prepare a publicly available Python library of commonly used differentially-private (DP) statistics and machine learning algorithms.

What's in the Package

- Functions: Mean, Variance, Histogram, Principal Component Analysis (PCA), Support Vector Machines (SVM), Logistic Regression.
- iPython notebook tutorials for each function.
- Package installation and setup guidelines.

Differential Privacy

• Algorithm $\mathcal{A}(\mathbb{D})$ taking values in an output space \mathbb{T} provides (ϵ, δ) -differential privacy [2] if

 $\mathsf{Pr}(\mathcal{A}(\mathbb{D}) \in \mathbb{S}) \le \exp(\epsilon) \mathsf{Pr}(\mathcal{A}(\mathbb{D}') \in \mathbb{S}) + \delta,$

for all measurable $\mathbb{S} \subseteq \mathbb{T}$ and all *neighboring* data sets \mathbb{D} and \mathbb{D}' differing in a single entry.

- ϵ and δ privacy parameters.
- Low ϵ and δ ensure more privacy.

Basics of PCA and SVM

- **PCA:** is a statistical procedure to convert a set of samples of possibly correlated variables into a set of linearly uncorrelated variables using orthogonal transformation.
- **SVM:** given a set of labeled training samples, SVM builds a model (separating hyperplane) that can assign labels to new samples.

Figures are from [3] and [4].

dp-stats: A Python Library for Differentially-private Statistics and Machine Learning Algorithms Sijie Xiong and Hafiz Imtiaz Advisor: Anand D. Sarwate Rutgers University

dp-stats in Action

How to use the dp-stats package for PCA and SVM?

- $d \times n$ data matrix $X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$
- $d \times d$ positive semi-definite second-moment matrix $A = XX^{\top}$
- Data vectors $\mathbf{x}_i \in \mathbb{R}^d$ are bounded $\|\mathbf{x}_i\|_2 \leq 1$

Samples from MNIST [1] Dataset

Non-private Principal Components

DP Principal Components: Using AG Algorithm [2]

Analyze Gauss	(AG)	[2]
---------------	------	-----

- 1. Set $\Delta_{\epsilon,\delta} = \frac{1}{\epsilon} \sqrt{2 \log(\frac{1.25}{\delta})}$
- 2. Generate symmetric E of i.i.d. samples from $\mathcal{N}(0, \Delta^2_{\epsilon \delta})$
- 3. Compute A = A + E

Output: Private second-moment matrix \hat{A} . Set V_k using PCA on A.

classification

4. https://commons.wikimedia.org/w/index.php? curid=22877598.