
Differentially Private Correlation Heatmap from
Multi-Modal Location Datasets

Sijie Xiong, Hafiz Imtiaz (advisors: Prof. D. Zhang, Prof. A. D. Sarwate)

Rutgers, The State University of New Jersey
Motivation

Goal: find “Points of Interest” in a city
→ can use location entropy [1]

Challenge: location data are private and sparse
→ need to preserve privacy
→ can use multi-modal datasets

Can we find a better approach?

Problem Setup

Raw dataset snippet (taxi.txt and bus.txt)

• Recordings are from a regular Monday (12h period)

• Divide entire city into 200× 1000-grid G
• Compute location entropy for all locations l ∈ G for

taxis (X ∈ RDx×N) and buses (Y ∈ RDy×N)

Location Entropy [2]

Given a location l ∈ G,

• Sl, the set of visits to l

• Sl,v, the set of visits vehicle v has made to l

• pl,v = |Sl,v|/|Sl|, the fraction of total visits to l that
belongs to vehicle v

• Vl, the set of unique vehicles that visited l

Location Entropy: H(l) = −
∑

v∈Vl
pl,v log pl,v

→ measures both the frequency and diversity of visits.

Canonical Correlation Analysis (CCA)

CCA finds subspaces for different modes of data
→ modes are maximally correlated after projection
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Differential Privacy (DP)

DP is formal and quantifiable.
Definition: Algorithm A(D) taking values in a
set T provides (ε, δ)-differential privacy if

P (A(D) ∈ S) ≤ eεP (A(D′) ∈ S) + δ,

for all measurable S ⊆ T and all neighboring
data sets D and D′ differing in a single entry.
Interpretation: (ε, δ) ↓ ⇒ privacy level ↑
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DP-CCA [3]

DP-CCA adds noise to the covariance matrix.
Algorithm:

• Obtain mean-centered and normalized data
Z = [X;Y]

• Compute C = 1
NZZ

>

• Compute Ĉ = C + E, where E is a noise
matrix calibrated to satisfy DP

Ĉ =
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]
• U: top-K eigenvectors of Ĉ−1xxĈxyĈ
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• V: top-K eigenvectors of Ĉ−1yy ĈyxĈ
−1
xxĈxy

Correlation Heatmap:
→ visualize tr
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Simulation Results

Original

✏ = 0.5, error = 0.25

✏ = 0.01, error = 0.76

Remark: as ε ↓, the DP-CCA heatmap becomes noisier, but still offers good estimation.

Future Work

• Correlation of traffic speeds among different modes of transportation

• Use the correlation to improve navigation
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